
Multi-Class Blue Noise Sampling
Li-Yi Wei

Microsoft Research

2 classes of
objects

Figure 1: Object placement by multi-class blue noise sampling. Our algorithms can produce both uniform (middle) and adaptive (right) sampling results.

Abstract
Sampling is a core process for a variety of graphics applications.
Among existing sampling methods, blue noise sampling remains
popular thanks to its spatial uniformity and absence of aliasing ar-
tifacts. However, research so far has been mainly focused on blue
noise sampling with a single class of samples. This could be insuf-
ficient for common natural as well as man-made phenomena requir-
ing multiple classes of samples, such as object placement, imaging
sensors, and stippling patterns.

We extend blue noise sampling to multiple classes where each in-
dividual class as well as their unions exhibit blue noise characteris-
tics. We propose two flavors of algorithms to generate such multi-
class blue noise samples, one extended from traditional Poisson
hard disk sampling for explicit control of sample spacing, and an-
other based on our soft disk sampling for explicit control of sample
count. Our algorithms support uniform and adaptive sampling, and
are applicable to both discrete and continuous sample space in ar-
bitrary dimensions. We study characteristics of samples generated
by our methods, and demonstrate applications in object placement,
sensor layout, and color stippling.

Keywords: multi-class, blue noise, sampling, Poisson hard/soft
disk, dart throwing, relaxation

1 Introduction
Sampling is important for a variety of graphics applications, includ-
ing rendering, imaging, and geometry processing. Although differ-
ent applications may favor different sampling patterns, blue noise
sampling remains quite popular and is widely adopted. Inspired by
the distribution of primate retina cells [Yellott 1983], a blue noise

distribution contains samples that are randomly located but remain
spatially uniform. The resulting sample set has a blue noise power
spectrum, with a signature lack of low frequency energy and struc-
tural residual peaks. Beyond a blue noise power spectrum, addi-
tional desiderata for graphics applications include support for adap-
tive/importance sampling, efficient computation, as well as the abil-
ity to place samples in both discrete and continuous sample spaces.

Due to its importance, blue noise sampling has been researched ex-
tensively [Cook 1986; Mitchell 1987; McCool and Fiume 1992;
Ostromoukhov et al. 2004; Jones 2006; Dunbar and Humphreys
2006; Kopf et al. 2006; Ostromoukhov 2007; Bridson 2007; White
et al. 2007; Wei 2008; Fu and Zhou 2008; Balzer et al. 2009; Cline
et al. 2009]. However, prior methods are mainly concerned about a
single class of samples, and thus are not directly applicable to a va-
riety of natural or man-made phenomena involving multiple classes
of samples, such as the distribution of cone and rod cells in human
retinas, the placement of multiple categories of objects, and the us-
age of multiple colored dots for stippling. In these situations, it is
often desirable to have each individual class of samples as well as
their union to exhibit blue noise distribution. Unfortunately, such
simultaneous blue noise properties across multiple classes of sam-
ples are not guaranteed by previous single-class sampling methods.
See Figure 2 for an example.

We present multi-class blue noise sampling algorithms that not only
guarantee a blue noise spectrum for each individual class as well as
their unions, but also allow samples to be placed in both discrete
and continuous sample spaces. Our methods also support adaptive
sampling and arbitrary sample space dimensionality.

To support different application scenarios, we present two flavors
of algorithms: one derived from Poisson hard disk sampling [Cook
1986] for explicit control of sample spacing, and another based
on our soft disk sampling for explicit control of sample count as
in relaxation [Lloyd 1982]. (In a nutshell, a hard disk, centered
on each sample, can neither deform nor intersect another, while
a soft disk can intersect another, but subject to an energy penalty
which, when minimized, produces uniform distribution.) Our main
idea is to extend single-class dart throwing for multi-class soft/hard
disk sampling by replacing the spacing parameter r in the former
with a c × c symmetric matrix r for c sample classes. Since many

un
if

or
m

pe
rc

la
ss

un
if

or
m

to
ta

ls
et

ou
rm

et
ho

d

total set class 0 class 1
Figure 2: Comparison between single- and multi-class blue noise sam-
pling. The top row is produced by applying single-class dart throwing to
individual classes, but the total set is highly non-uniform. The middle row
is produced by applying single-class dart throwing to the total set, but the
individual classes are highly non-uniform. Our approach produces samples
that exhibit blue noise distribution for each class as well as the total set.
Each class contains ∼650 samples generated with r = 0.02.

blue-noise sampling methods are descendants of these two seminal
algorithms [Lloyd 1982; Cook 1986] with different quality, per-
formance, and usage tradeoffs, having multi-class extensions with
both flavors could benefit different applications. Several such ap-
plications we show include object distribution [Cohen et al. 2003;
Lagae and Dutré 2005], stippling [Kopf et al. 2006; Balzer et al.
2009], sensor layout and color filter design [Ben Ezra et al. 2007],
involving both continuous/discrete sample space, uniform/adaptive
sampling, control for sample spacing/count, and preferences for
spatial-uniformity/spectrum-quality.

Our method is related to color halftoning and especially vector error
diffusion [Baqai et al. 2005; Pang et al. 2008], which can also pro-
duce multiple classes of blue noise samples. However, our method
differs from color halftoning in several significant ways. First of
all, halftoning methods are mainly about computing colors for a
given set of discrete samples, not for general purpose sampling in
graphics that might require computing both color and position in-
formation in either a discrete or continuous domain. For halftoning
methods that rely on limited neighborhood sizes such as dithering
(predetermined masks) or error diffusion (predetermined distribu-
tion coefficients), such regular discretization could be undesirable
(see e.g. [Alliez et al. 2003; Ostromoukhov et al. 2004]). Sim-
ply increasing the output resolution may not eliminate these dis-
cretization artifacts because this would reduce the effective spatial
extent of the fixed neighborhoods. Thus, even in the traditional sin-
gle class setting, halftoning is not a replacement for general blue
noise sampling. Furthermore, even though certain halftoning tech-
niques like error diffusion have implied blue noise properties, there
is no guarantee that this will be carried over in the multi-class set-
ting. To our knowledge, the best halftoning methods for generating
multi-class blue noise samples rely on iterative optimization (e.g.
the pioneering work of [Wang and Parker 1999]), which is often
slow/complex and restricted to uniform/regular/discrete sampling.

2 Multi-Class Hard Disk Sampling
Dart throwing is a classical algorithm [Cook 1986] for Poisson hard
disk sampling, a particular kind of blue noise distribution where
samples are not only randomly and uniformly distributed but re-
main at least a minimum distance r away from each other. In dart
throwing, a trial sample is drawn randomly from the entire domain.
If the sample is not within a user-specified distance r from any other
existing samples, it is accepted. Otherwise, it is rejected. This pro-
cess is repeated until reaching certain termination criteria, e.g. a
target number of samples and/or a maximum number of trials.

Our multi-class hard disk sampling algorithm follows a similar pro-
cess, with necessary extensions to handle multiple classes of sam-
ples. Specifically, instead of a single number r, the user specifies
a set of numbers {ri}i=0:c−1 for the c classes of samples. During
the sample generation process, instead of checking whether a new
trial sample is at least r away from all existing samples, we use
a (symmetric) c × c matrix r for conflict check, where two sam-
ples in classes k and j have to be at least r(k, j) away from each
other. This r-matrix is built from {ri} with each diagonal entry
r(i, i) = ri. Finally, we also need to determine the class for each
new trial sample. Below we describe the algorithm in detail.

2.1 Sample class

For multi-class sampling, we have to decide from which class to
sample for the next trial. To ensure that each class is well sampled
throughout the entire process, we always pick the next trial sample
from the class that is currently most under-filled. We measure
this via fill rate, defined as the number of existing samples for a
particular class over the target number of samples for that class. To
maintain an equal fill rate across different classes, we define N i,
the target sample number of class i, as follows:

N i = N

1
rni∑c−1
j=0

1
rnj

(1)

where N is the total number of target samples, n the sample space
dimension, and {ri} the specified per-class minimum distances.
Not maintaining equal fill rates among all classes can easily lead
to non-uniform sample distribution.

2.2 Sample control

To ensure easy usage and a uniform sample distribution, it is desir-
able to generate the classes together (instead of one after another)
and maintain a consistent fill rate among different classes through-
out the sampling process. (We present a more detailed analysis in
Section 4.) However, always drawing the next trial sample from the
most under-filled class (Section 2.1) alone is not enough to achieve
this goal, as it may be unable to find a new sample not in conflict
with existing ones. This can happen quite early in the process when
the output distribution is far from being uniform, so we cannot sim-
ply stop there. One possible remedy is to accept a trial sample s if
it fails to be accepted for the most under-filled class but succeeds
for another one. However, as shown in the left case of a simple 2-
class experiment in Figure 3, even though the classes might main-
tain consistent fill-rates throughout the early part of the process, in
the end the fill-rates may become unbalanced as eventually it be-
comes difficult for the class with a larger r value to compete with
another with smaller r.

Another possibility is to tune the relative probability to sample from
each class to achieve the desired fill rates at the end of the pro-
cess, as shown in the middle case of Figure 3 (notice the two curves
meet together at the end). However, there are two problems for this
method. First, it is very tricky to come up with the right class proba-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

c
d
f
fo

r
%

 o
f
ta

rg
e
t
#
 o

f
s
a
m

p
le

s

trials

class 0
class 1

247810.7 trials
0 killed

237444.7 rejected
10366 accepted

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

c
d
f
fo

r
%

 o
f
ta

rg
e
t
#
 o

f
s
a
m

p
le

s

trials

class 0
class 1

240310.5 trials
0 killed

229944.5 rejected
10366 accepted

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

c
d
f
fo

r
%

 o
f
ta

rg
e
t
#
 o

f
s
a
m

p
le

s

trials

class 0
class 1

157388.3 trials
1023.7 killed

145998.6 rejected
11389.7 accepted

Figure 3: Sampling history comparison. Here, we plot the fill-rates for two
classes throughout the sampling process (with the number of trials normal-
ized to [0 1]). r0 = 0.02 and r1 = 0.00756. The left case is generated by
always drawing a new sample from the most under-filled class, the middle
case with a constant class probability p0 = 0.425 and p1 = 0.575, and the
right case by our final algorithm that allows removal of samples. We also
measure # of trials as well as # of accepted, rejected, and killed samples
(averaged over 10 runs). Notice that all 3 cases have the same final number
of samples 10366 (= 11389.7 accepted - 1023.7 killed for the right case).

bilities; we estimated the numbers for the middle case in Figure 3 by
exhaustively trying a vast number of possible combinations. Sec-
ond, due to the stochastic nature of dart throwing, even with per-
fectly tuned probabilities, there is no guarantee that a different run
with the same parameters would reach the same end condition, i.e.
the two curves might still not meet in the end.

To resolve these issues, we allow the removal of existing samples
ns that are in conflict with a new trial sample s if (1) it is impossible
to add another sample to class cs (this can be figured out by track-
ing the still available spaces [Dunbar and Humphreys 2006] or by
using a simple timeout mechanism), (2) each s′ ∈ ns (i.e. these in
conflict with s) belongs to a class cs′ with a smaller r than the class
cs for s and (3) each cs′ is at least as filled as cs. See Removable()
in Program 1. Intuitively, this means that we only remove samples
from classes that are easier to sample from (i.e. having a smaller r
value) and are already as filled as the current class.

function bool Removable(ns, s, r)

foreach s′ ∈ ns
if r(cs′ , cs′) ≥ r(cs, cs) or FillRate(cs′) < FillRate(cs)

return false
return true

Program 1: Can we remove the set of conflict samples ns for s?

Although it may sound unusual to allow removal of existing sam-
ples, we have found this essential to maintain an equal fill-rate
across all classes at all times. As shown in the right case of Fig-
ure 3, the two classes maintain consistent fill-rate throughout the
sampling process. Furthermore, even though killing samples may
in theory increase the computation, in practice we have found that
the number of killed samples usually far below the number of ac-
cepted and rejected samples. In fact, as shown in Figure 3, the
efficiency brought by the sample removal may actually reduce the
total number of trials, making the process even more efficient.

2.3 r-matrix construction

As discussed above, we fill the diagonal entries r(i, i) of r as ri,
the user specified intra-class minimum distance. But how should
we compute the off-diagonal entries of r? If we fill the off-diagonal
entries with 0, our algorithm will reduce to decoupled single-class
sampling (i.e. the top row in Figure 2). On the other hand, if we
treat the samples as geometric disks and define the off-diagonal en-
tries r(k, j) as rk+rj

2
, we will get results as in the middle row of

Figure 2, where the individual classes can be highly non-uniform

function r← BuildRMatrix({ri}i=0:c−1)

// {ri}: user specified per-class values
// c: number of classes
for i = 0 to c-1

r(i, i)← ri // initialize diagonal entries
end
sort the c classes into priority groups {Pk}k=0:p−1 with decreasing ri
// classes in the same priority group have identical r values
C ← ∅ // the set of classes already processed
D← 0 // the density of the classes already processed
for k = 0 to p-1
C ← C

⋃
Pk

foreach class i ∈ Pk
D←D + 1

rni
// n is the dimensionality of the sample space

end
foreach class i ∈ Pk

foreach class j ∈ C
if i 6= j

r(i, j)← r(j, i)← 1
n√
D

// r is symmetric
end

end
end
return r

Program 2: r-matrix construction for uniform sampling.

caused by samples in other classes “getting in the way”.

Our algorithm for computing r is shown in Program 2. To under-
stand how it works, let’s start with two classes (c = 2) only. Since
each class i will have expected sample density proportional to 1

rni
in a n-dimensional sample space, the off-diagonal entries rφ of r
should be computed via the following formula so that the total set
has the expected density

∑c−1
i=0

1
rni

:

1

rnφ
=

c−1∑
i=0

1

rni
(2)

The bottom row in Figure 2 is produced by r constructed in this
fashion. It can be seen, both experimentally and intuitively, that
an rφ value deviating from the one computed via Equation 2 will
produce worse results, i.e. a smaller value will produce a less uni-
form total set as in the top row of Figure 2, whereas a larger value
will produce less uniform individual classes as in the middle row
of Figure 2. The method described above could also be applied
to compute a uniform off-diagonal r matrix entry value for c > 2
classes if they share an identical r value.

However, for c > 2 classes with different r values, computing a
uniform off-diagonal entry value via Equation 2 will produce sub-
optimal results. Recall that a Poisson disk sample set possesses
a blue noise power spectrum, with an inner ring radius 1

r
within

which the power spectrum has very low energy. However, in multi-
class blue noise sampling, the power spectrum of a class cj with
parameter rj could interfere with the power spectrum of another
class ci with rj > ri, as the noise/energy outside frequency 1

rj
of

class cj would fall within the inner ring 1
ri

of class ci. Thus, to
minimize the pollution inside its inner ring 1

ri
, each class ci would

need to ensure that the union of all classes {cj} with rj > ri has
as uniform a joint distribution as possible.

We achieve this goal by the algorithm described in Program 2. Be-
low is an intuitive explanation. We begin by assigning the diagonal
entries of r from the user specified parameters {ri}. To compute
the off-diagonal entries, we first sort the classes by their r values
in a decreasing order. We then add them in that order to the set of
already considered classes C, while simultaneously computing the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

f0

f1 class 0
class 1 Figure 4: Inter-class spectrum interference.

Here we show the radial mean plots for 2
classes with different r values. Each class
has its energy peak around frequency f = 1

r
.

Note that the peak energy of c0 falls into the
inner ring of c1, since f0 < f1 (r0 > r1).

off-diagonal entries that involve the newly added classes. The com-
putation is performed to ensure that at any moment the set C is as
uniform as possible, according to the merit of Equation 2.

Discussion An r-matrix built by the aforementioned method
can exhibit discontinuous changes in the off-diagonal entries when
the r values of a group of classes change from being identical to
slightly different. However, we have not found this to impact dis-
tribution quality. For real application scenarios, we believe it will
be more common to use classes with either identical or sufficiently
different r values (to avoid this issue). In addition, the user can
choose to group the classes differently from the default behavior in
Program 2.

2.4 Adaptive sampling

So far we have described multi-class dart throwing only for uni-
form sampling. Here we describe how to extend it for adaptive
sampling. The main difference between uniform and adaptive sam-
pling is that the user-specified constants {ri}i=0:c−1 for the former
could be general spatially-varying functions {ri(.)}i=0:c−1 for the
latter. This requires us to make corresponding spatially-varying ex-
tensions for the r-matrix, the conflict check metric, and the criterion
in determining if a sample s′ is removable relative to s:

• For building r-matrix, we simply apply the algorithm in
Program 2 for every sample location s, i.e. r(s) =
BuildRMatrix({ri(s)}i=0:c−1).

• For conflict check, we use r̂(s, s′) = r(s,cs,cs′)+r(s′,cs′ ,cs)
2

instead of r(cs, cs′). This is analogous to the use of r(s)+r(s
′)

2
instead of r for single-class adaptive sampling.

• For Removable(), we use the sample location s in addition to
its class number cs in Program 1; see Program 3.

function bool Removable(ns, s, r(.))

foreach s′ ∈ ns
if r(s′, cs′ , cs′) ≥ r(s, cs, cs) or FillRate(cs′) < FillRate(cs)

return false
return true

Program 3: Removable() for adaptive sampling. The colored portions
highlight differences from the uniform sampling algorithm in Program 1.

3 Multi-Class Soft Disk Sampling
In Section 2 we extend single-class hard disk sampling for multiple
classes of samples. Here, we extend the method further by plac-
ing a soft disk centered on each sample. These soft disks behave
like energy blobs with local support. They do not have hard bound-
aries and thus can intersect each other, but the amount of overlap
is subject to an energy penalty which, when minimized, produces a
uniform distribution. The main advantage of our soft disk sampling
is that it serves as a good complement to hard disk sampling, of-
fering explicit control for sample count ({Ni}i=0:c−1 for c classes)
while producing distributions with more spatial uniformity. Even
though relaxation [Lloyd 1982] can typically achieve these bene-
fits, we have found that it might not produce good results for the
multi-class setting.

Below, we define the notion of a soft disk and an energy function

measuring distribution uniformity, followed by a soft dart throwing
method that minimizes this energy for blue noise sampling.

3.1 Uniformity measurement

We quantify sample uniformity via the following formula:

E(s) =
∑
s′∈S

ω(cs, cs′)φs′,σ(s,s′)(s)

φs′,σ(s,s′)(s) = e
− (s−s′)2

σ(s,s′)2 (3)

where s is the query sample for energy value, s′ any sample in the
sample set S, ω(cs, cs′) a user specifiable scalar weight factor for
class combination (cs, cs′), φs′,σ a Gaussian blob with center s′

and width σ that depends on the sample pair (s, s′). Intuitively,
E(.) tends to be smaller for an S with a more uniform sample dis-
tribution. Below we provide more details about the parameters:

ω This parameter ω(cs, cs′) allows the user to specify different
importance to different class combinations. We have found it
adequate to simply set ω = 1, treating all classes equally.

σ The width σ of a blob φs′,σ(s,s′)(s) depends not only on its
center s′ but also the query sample s. This follows natu-
rally from our multi-class hard disk sampling algorithm pre-
sented in Section 2, as the desired spacing between two sam-
ples s′ and s depends on not only their respective class ids but
also their locations for adaptive sampling. Intuitively, σ(s, s′)
should be proportional to r̂(s, s′) in Section 2.4, so that the
blob φs′,σ(s,s′)(s) properly measures the energy according to
the desired distance between s and s′. In our experiments we
have found that σ(s, s′) = 0.25× r̂(s, s′) works well.

r To evaluate r̂ we will need to know the sample spacing param-
eters {ri}. These are not given explicitly in soft disk sam-
pling, but can be estimated from the specified sample counts
{Ni} by setting ri = ri,max, the average inter-sample dis-
tance computed from the maximum packing of Ni samples.

3.2 Soft dart throwing

One possible method to generate samples minimizing Equation 3 is
to extend the multi-class dart throwing algorithm in Section 2 for
soft disk samples. Our soft dart throwing algorithm is similar to
its hard counterpart, with the major difference being that instead
of rejecting a new trial sample s′ when it is too close to any exist-
ing samples, we always accept s′. This feature allows the user to
exactly control the final number of samples across all classes. To
help ensure the sample uniformity, we perform multiple attempts of
s′ and pick the one with minimum energy E(s′) among all trials.
(A similar idea is used in best candidate dart throwing [Mitchell
1991].) During the initial phase of the algorithm when the domain
Ω is sparsely populated, it might be wasteful to perform many tri-
als. To speed this up, the user can optionally specify a threshold
energy Et to allow early termination of trials when a trial sample
s′ with E(s′) < Et is found. We have found that Et = 0.01 works
well. Note that Equation 3 measures only spatial uniformity and
could favor a regular distribution. Our soft dart throwing method,
due to its stochastic nature, avoids such potential regularity.

4 Analysis
We use the methods in [Lagae and Dutré 2008] to analyze the spa-
tial and spectrum properties of sample distributions. For spatial
uniformity, we utilize the relative radius ρ = r

rmax
, where r is the

minimum spacing between any pair of samples and rmax is the av-
erage inter-sample distance computed from the maximum packing

ha
rd

di
sk

,r
=

0.
02

pe
rc

la
ss

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 4

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 9

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 13

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 64

so
ft

di
sk

,N
=

13
00

pe
rc

la
ss

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 1

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 4

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 9

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

c = 16
Figure 5: Spectrum results for different number of classes. From top to
bottom (within each group): power spectrum, radial mean power, and radial
variance/anisotropy. Each column is produced with a different number of
classes c as indicated. For easy comparison, we overlay the ground truth
mean curve (c = 1) in green color with all other cases (c > 1).

of a given number of samples. For spectrum analysis, we compute
the Fourier power spectrum and measure the radial mean and vari-
ance/anisotropy, all averaged over 10 runs.

Single-class soft dart throwing Under the single-class set-
ting, soft dart throwing produces results exhibiting good spatial uni-
formity with ρ = 0.75. The power spectrum analysis also confirms
the quality, as shown by the c = 1 case in Figure 5. Due to its
stochastic and non-iterative nature, soft dart throwing does not tend
to settle down into hexagonal shaped local minimums as in tradi-
tional Lloyd relaxation [Lloyd 1982] and thus could be used as an
alternative for applications that require an exact sample count.

Number of classes We start our analysis for multi-class sam-
pling with the simplest case where all the classes have the same
parameters, i.e. r for hard disk sampling and N for soft disk sam-
pling. As shown Figure 5, the multi-class statistics remain similar
to the single-class setting across a variety of c numbers.

As recommended by [Lagae and Dutré 2008], ρ should be in the
range [0.65 0.85] for single-class blue noise sampling. However,
for the multi-class setting, we have found that ρ ∈ [0.65 0.70] is
achievable but beyond that may require excessive number of tri-
als or iterations. Fortunately, this issue does not seem to worsen
progressively with the increasing number of classes; due to our
r-matrix construction algorithm, the inter-class r values decrease
with the increasing number of classes, thus they tend to cancel each
other out in terms of imposing additional constraints. All results
shown in the paper have ρ ≥ 0.67 unless indicated otherwise.

Non-uniformity Next we examine what happens if the classes
have different parameters. We start with the simplest case of only
two classes as shown in Figure 7. We produce several sets of 2-

to
ta

ls
et

fo
rF

ig
ur

e
5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 200 300 400 500

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100 200 300 400 500 600 700

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 200 400 600 800 1000

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 500 1000 1500 2000

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

c = 4

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

c = 9

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

c = 13

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

c = 64

to
ta

ls
et

fo
rF

ig
ur

e
7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.011
r1 = 0.0092

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.0141
r1 = 0.0082

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.02
r1 = 0.0076

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.08
r1 = 0.0071

Figure 6: Total sample set distribution. For the radial mean plot, we
overlay the ground truth produced by single-class dart throwing as green
curves for easy comparison. Shown here are only hard disk results; the soft
disk ones have similar quality.

class sample sets with different r0 and r1 values so that the total is
a sample set with the same r value (where 1

rn
= 1

rn0
+ 1

rn1
). We

start with similar r0 and r1 on the left and with increasing disparity
towards the right. Here, we can observe several interesting facts:

• Class 0 remains indistinguishable from single-class sampling.
However, class 1 might deviate from the single-class results,
as manifested by the small “humps” between their radial mean
curves. These humps are caused by the spectrum peaks of
class 0, centered at frequency 1

r0
as discussed in Figure 4.

• The deviation between class 1 and ground truth is less obvious
when r0 and r1 are either sufficiently similar or sufficiently
dissimilar. For the former, the hump will happen around the
existing peak of class 1, making it non-obvious. For the latter,
class 0 simply has too few samples to have a major impact
on the power spectrum of class 1. However, even for the case
with maximum discrepancy (r0 = 0.02 and r1 = 0.0076) we
have not found noticeable differences in sampling results.

Class priority As we discussed in Section 2.2, generating all
classes together allows us to maintain consistent fill-rates and thus
distribution quality among all classes. Generating the classes se-
quentially does not allow us to do this, and would require us to
specify criteria for stopping the generation of one class and starting
another one. This might not be easy as it is very hard to predict
if an earlier class would over-constrain the generation of a later
one. Furthermore, generating the classes sequentially might ac-
tually harm the distribution quality; as illustrated in Figure 8, when
classes c0 and c1 are produced prior to c2, c2 might have little rooms
left, resulting in a non-uniform distribution. This effect is particu-
larly pronounced for the soft disk sampling case. However, we wish
to emphasize that both our hard and soft disk sampling algorithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.011

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r1 = 0.0092

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r0 = 0.0141

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

r1 = 0.0082

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

f0
f1

r0 = 0.02

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

f0
f1

r1 = 0.0076

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

f0
f1

r0 = 0.08

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

f0
f1

r1 = 0.0071

Figure 7: Spectrum results for
two classes with different r val-
ues. Here we show the hard disk
results for easy explanation; the
soft disk results have similar but
slightly more pronounced effects.
Each pair of columns is produced
together with different r0 and r1
values so that their total is a sam-
ple set with r = 0.01√

2
. For the

radial mean plots, we overlay the
single-class ground truth as green
curves for easy comparison.

N
2

=
51

83
N

1
=

12
95

N
0

=
32

3

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

together

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250
p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

sequential c0 ≺ c1 ≺ c2
Figure 8: Class priority. Here we generate 3 classes of samples either
together (left group) or sequentially (right group). We use soft- rather than
hard-disk sampling due to more pronounced effects. In the radial mean
plots, the red/green curves correspond to multi/single-class results. Note
that generating the classes sequentially would introduce more low frequency
noise for the classes produced latter.

can be used to generate the sample classes sequentially if the user
desires so.

Total sample set Figure 6 shows the power spectrums for the
total sample distribution from selected sets of results in Figure 5
and Figure 7. As shown, the power spectrums of the total sets stay
close to the ground truth blue noise profiles. The deviation is most
obvious when there are a small number of classes and/or when the
classes have similar r values. When there are a larger number of
classes, the probability that a sample has a neighbor in a differ-
ent class is higher, thus geometrically making the entire sample set
more similar to a single-class distribution; see the progression in the
top cases. When the classes have dissimilar r values, the class with
larger r has fewer samples to impact the overall power spectrum;
see the progression in the bottom cases.

Performance Using a simple grid/tree data structure [Bridson
2007; Wei 2008] for storing samples and checking conflicts, our
current implementations are able to achieve reasonable perfor-
mance, as tabulated in Table 1. For soft disk sampling, we usually
cut off the Gaussian blobs beyond 3σ, thus localizing all energy
updates and evaluations. The performance decreases with an in-
creasing number of classes since the sample placement is more con-
strained, incurring more computations during the generation pro-
cess. Since a grid/tree data structure allows us to perform the con-
flict check in constant time, the total time for generatingN samples
is χN , where χ is the ratio of the total number of trials overN . We
are not yet able to determine an accurate formula for χ since it de-

pends on not only the number of classes but also certain implemen-
tation details, e.g. how accurately the available space is tracked to
reduce futile trials. (We measure the timing in Table 1 via uniform
random sampling as in classical dart throwing without such empty-
space tracking.) We thus believe that χ could be better determined
along with more definite future accelerations of our algorithms.

classes 1 2 3 4 5 6 7 8
hard disk 9.85 3.80 2.74 2.24 1.36 1.15 0.99 0.65
soft disk 0.23 0.17 0.135 0.13 0.13 0.12 0.086 0.084

Table 1: Performance of our algorithms. All performance numbers are in
K-samples/second, and measured on a laptop with a 2.50 GHz CPU + 2 GB
RAM. The 1-class case serves as a reference for others.

5 Applications
Here, we show several applications for multi-class blue noise sam-
pling. Depending on the particular application needs, either hard-
disk or soft-disk sampling may be more suitable. Specifically, the
former is better for applications that have strict sample spacing re-
quirement and are flexible with regard to the number of samples,
and the latter for applications that prefer more uniform spatial dis-
tribution and exact specification for the number of samples. Hard
disk sampling is also more natural for continuous sample spaces
whereas soft disk sampling suitable for both continuous and dis-
crete settings. In addition, hard dart throwing is usually computa-
tionally faster as it is easier to accelerate.

5.1 Object distribution

Uniform object placement is often desirable for both scientific (e.g.
biological distribution) and artistic (e.g. procedural texture [Lagae
and Dutré 2005]) applications. Such a uniform distribution can be
achieved by blue noise sampling [Cohen et al. 2003; Lagae and
Dutré 2005; Kopf et al. 2006], but existing methods do not explic-
itly consider the presence of multiple classes of objects. We can
apply our approach for this purpose. An example is shown Figure 1
for placing two classes of objects in either uniform or adaptive dis-
tribution. Due to the desire to keep minimum distances between
objects, we opt for hard disk sampling for this application. Our
method could also be applied to place 3D objects (e.g. flowers [Co-
hen et al. 2003]) for scene design or 2D motifs for pattern genera-
tion (e.g. [Lagae and Dutré 2005]).

5.2 Color stippling

In addition to object placement, blue noise sampling can also
be employed for stippling with visually pleasing pointillism ef-
fects (see e.g. [Kopf et al. 2006; Kim et al. 2008; Balzer et al.
2009]). However, existing stippling results are mostly black-and-
white since traditional blue noise sampling can handle only a single
class of samples. We can apply our algorithms for multi-color stip-

Figure 9: Color stippling result. Using a color image (a corner from Seu-
rat’s “A Sunday Afternoon on the Island of La Grande Jatte”) as the input
importance field, our method produces an adaptive sample set with ∼290K
color dots in 7 classes (red, green, blue, cyan, magenta, yellow, black) over
a white background. (Note: this image might not show up well in print; try
it on a computer display and vary the viewing distance.)

pling by using a color image as the input importance field, treat-
ing each color channel as a separate class and producing a multi-
class output sample set accordingly. Unlike color halftoning which
mainly targets discrete regular sample sets, our method allows sam-
ples to be placed anywhere and thus provides more of a free-style
pointillism effect. As shown in Figure 9, our method can produce
reasonably complex color stippling; the colored dots not only fol-
low the input importance field but also maintain a blue noise distri-
bution.

5.3 Sensor layout

The layout of a color sensor array determines the quality of the sam-
pling results as well as subsequent reconstruction algorithms, such
as super-resolution. The most widely used layouts usually deploy
the RGB sensor elements in a regular grid (or variations thereof);
as pointed out in [Ben Ezra et al. 2007], grid layouts are subject
to a variety of sampling and reconstruction issues, and the authors
recommended the use of Penrose pixels. However, as pointed out in
[Kopf et al. 2006; Lagae and Dutré 2008], a Penrose sample layout,
even after quality improvement via jittering [Ostromoukhov et al.
2004], still exhibits visible spectrum bias.

Following an analogous line of thinking, we wonder if it is possi-
ble to further improve the quality of Penrose pixel layout for color
sensors [Ben Ezra et al. 2007] via our approach, treating the RGB
sensors as three classes of samples. The comparison is shown in
Figure 10. For [Ben Ezra et al. 2007], we use the randomized 3-
coloring algorithm in [McClure 2002] to assign the RGB sensor
locations. For our result, we use soft disk sampling to specify the
exact number of samples. As shown, our result has no bias in the
power spectrum as well as no aliasing in a spatial sampling for the
zone-plate pattern, a commonly used stress test for evaluating sam-
pling quality [Kopf et al. 2006; Ostromoukhov 2007; Wei 2008].

Pe
nr

os
e

pi
xe

ls
ou

rm
et

ho
d

Figure 10: Comparison with Penrose pixels for RGB sensor layout. From
left to right: spatial sensor layout, power spectrum, and spatial sampling
via the zone-plate pattern. The spectrum results are produced by one of the
classes while the spatial sampling via all 3 classes.

5.4 Color filter array design

Penrose pixels [Ben Ezra et al. 2007] and our method would pro-
duce better spectrum quality than traditional regular grid sensor lay-
out. However, a regular layout is easier to fabricate, especially for
wiring [Ben Ezra et al. 2007]. We have found it possible to maintain
the regular layout for the sensor cells, but apply our technique to
de-regularize the color filter placement so that the spectrum quality
is still improved. This can be achieved by applying our multi-class
soft disk sampling algorithm to a pre-determined regular set of sam-
ples. Due to the desire to specify the exact number of samples per
(color channel) class, this is an application where soft-disk would
be more suitable than hard-disk sampling.

As shown in Figure 11, a regular layout (Bayer mosaic in that par-
ticular case) causes significant aliasing as expected. One possible
solution to reduce aliasing is to place the samples randomly. Even
though randomization cannot remove aliasing caused by the under-
lying regular grid structure, the sampling quality is still improved
by de-regularizing the color filter elements. However, this reduction
in aliasing is achieved at the expense of more noise. Our soft disk
approach, in contrast, reduces aliasing compared to a regular layout
while introducing less noise than a random layout. We have also
shown result produced by our hard disk approach with a discrete
sample domain. To ensure that all sensor elements are utilized, we
gradually decrease the r parameters throughout the sampling pro-
cess similar to [McCool and Fiume 1992]. As shown, even though
the hard disk result is better than random placement, it is still worse
than the soft disk one. Furthermore, hard disk sampling cannot
guarantee an exact number of samples per class.

6 Limitations and Future Work
We have mainly focused on the basic algorithms for multi-class
sampling and only lightly touched on the issues of acceleration.
Since our algorithms are extensions of dart throwing, we believe
they can benefit from a repertoire of previous acceleration tech-
niques, such as [Jones 2006; Dunbar and Humphreys 2006; White
et al. 2007; Wei 2008]. Our method is also applicable for construct-
ing multi-class sample tiles [Cohen et al. 2003; Ostromoukhov et al.
2004; Kopf et al. 2006; Lagae and Dutré 2006; Ostromoukhov
2007] as another way to save run-time computation.

Although we have only demonstrated results in 2D, our algorithm
is directly applicable to higher dimensional spaces [Bridson 2007;
Wei 2008] for scenarios like 3D object distribution. It would also
be interesting to extend our approach to sample non-Euclidean do-

re
gu

la
r

ra
nd

om
ha

rd
di

sk
so

ft
di

sk

Figure 11: Color filter array design. From left to right: spatial filter array
layout, zoneplate sampling, and zoom-in of the low frequency corner. The
bottom 3 methods can remove aliasing caused by regular color layout, but
not aliasing by the underlying sensor grid (i.e. near the zoneplate corners).
Compared to other methods, our soft disk sampling produces more uniform
spatial layouts, translating to less noisy sampling results (right column).

mains such as manifold surfaces [Turk 1992; Fu and Zhou 2008;
Cline et al. 2009] for rendering and texturing applications.

Acknowledgements Yin Li inspired my pursuit of this project by
asking if it is possible to extend [Wei 2008] to place multiple classes of
objects. Kun Zhou, Xin Tong, Eric Stollnitz, Brandon Lloyd, Bill Bax-
ter, and the anonymous reviewers provided valuable suggestions. The
OPAL Group fixed a SIS bug that once made my submission disappear. I
would like to thank Naga Govindaraju, John Manferdelli, Dan Reed, and
other incubation team members for their support. Flower images cour-
tesy of http://www.gif-favicon.com/. Grass texture courtesy of
http://store.got3d.com/.

References
ALLIEZ, P., DE VERDIÈRE, É. C., DEVILLERS, O., AND ISEN-

BURG, M. 2003. Isotropic surface remeshing. In Shape Model-
ing International, 49–58.

BALZER, M., SCHLÖMER, T., AND DEUSSEN, O. 2009.
Capacity-constrained point distributions: A variant of Lloyd’s
method. In SIGGRAPH ’09, 86:1–8.

BAQAI, F., LEE, J.-H., AGAR, A., AND ALLEBACH, J. 2005.
Digital color halftoning. Signal Processing Magazine, IEEE 22,
1 (Jan.), 87–96.

BEN EZRA, M., LIN, Z., AND WILBURN, B. 2007. Penrose pixels
super-resolution in the detector layout domain. In ICCV ’07, 1–
8.

BRIDSON, R. 2007. Fast Poisson disk sampling in arbitrary dimen-
sions. In SIGGRAPH ’07 Sketches & Applications.

CLINE, D., JESCHKE, S., RAZDAN, A., WHITE, K., AND
WONKA, P. 2009. Dart throwing on surfaces. In EGSR ’09,
1217–1226.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. In SIGGRAPH ’03,
287–294.

COOK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. Graph. 5, 1, 51–72.

DUNBAR, D., AND HUMPHREYS, G. 2006. A spatial data struc-
ture for fast Poisson-disk sample generation. In SIGGRAPH ’06,
503–508.

FU, Y., AND ZHOU, B. 2008. Direct sampling on surfaces for high
quality remeshing. In SPM ’08, 115–124.

JONES, T. R. 2006. Efficient generation of Poisson-disk sampling
patterns. journal of graphics tools 11, 2, 27–36.

KIM, D., SON, M., LEE, Y., KANG, H., AND LEE, S. 2008.
Feature-guided image stippling. Computer Graphics Forum 27,
4, 1209–1216.

KNUTH, D. E. 1987. Digital halftones by dot diffusion. ACM
Trans. Graph. 6, 4, 245–273.

KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LISCHINSKI, D.
2006. Recursive Wang tiles for real-time blue noise. In SIG-
GRAPH ’06, 509–518.

LAGAE, A., AND DUTRÉ, P. 2005. A procedural object distribu-
tion function. ACM Trans. Graph. 24, 4, 1442–1461.

LAGAE, A., AND DUTRÉ, P. 2006. An alternative for Wang tiles:
colored edges versus colored corners. ACM Trans. Graph. 25, 4,
1442–1459.

LAGAE, A., AND DUTRÉ, P. 2008. A comparison of methods
for generating Poisson disk distributions. Computer Graphics
Forum 21, 1, 114–129.

LLOYD, S. 1982. Least squares quantization in PCM. IEEE Trans-
actions on Information Theory 28, 2, 129–137.

MCCLURE, M. 2002. A stochastic cellular automaton for three-
coloring penrose tiles. Computers & Graphics 26, 3, 519–524.

MCCOOL, M., AND FIUME, E. 1992. Hierarchical Poisson disk
sampling distributions. In Graphics Interface ’92, 94–105.

MITCHELL, D. P. 1987. Generating antialiased images at low
sampling densities. In SIGGRAPH ’87, 65–72.

MITCHELL, D. P. 1991. Spectrally optimal sampling for distribu-
tion ray tracing. SIGGRAPH Comput. Graph. 25, 4, 157–164.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004.
Fast hierarchical importance sampling with blue noise proper-
ties. In SIGGRAPH ’04, 488–495.

OSTROMOUKHOV, V. 2007. Sampling with polyominoes. In SIG-
GRAPH ’07, 78:1–6.

PANG, W.-M., QU, Y., WONG, T.-T., COHEN-OR, D., AND
HENG, P.-A. 2008. Structure-aware halftoning. In SIGGRAPH
’08, 89:1–8.

TURK, G., AND BANKS, D. 1996. Image-guided streamline place-
ment. In SIGGRAPH ’96, 453–460.

TURK, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH ’92,
55–64.

WANG, M., AND PARKER, K. 1999. Properties of combined blue
noise patterns. ICIP 4, 328–332.

WEI, L.-Y. 2008. Parallel Poisson disk sampling. In SIGGRAPH
’08, 20:1–9.

WHITE, K., CLINE, D., AND EGBERT, P. 2007. Poisson disk point
sets by hierarchical dart throwing. In Symposium on Interactive
Ray Tracing, 129–132.

YELLOTT, J. I. J. 1983. Spectral consequences of photoreceptor
sampling in the rhesus retina. Science 221, 382–385.

ZHOU, B., AND FANG, X. 2003. Improving mid-tone quality of
variable-coefficient error diffusion using threshold modulation.
In SIGGRAPH ’03, 437–444.

Supplementary Materials
(For the electronic version of the paper not the final proceedings.)

r0all samplesr0 class 0, r0 = 0.08 class 1, r1 = 0.04 class 2, r2 = 0.02

r0all samplesr0 N0 = 88 N1 = 353 N2 = 1414

Figure 12: Multi-class blue noise sampling. We propose two flavors of
algorithms, Poisson hard disk sampling for explicit control of sample spac-
ing, and soft disk sampling for explicit control of sample count. Here we
generate 3 classes of samples and visualize them in different colors. Each
class could have its own density, controlled by sample spacing ri in hard
disk sampling (top) or sample count N i in soft disk sampling (bottom).

In Section A, we provide pseudo-codes for our main algorithms, in-
cluding hard/soft dart throwing for uniform/adaptive sampling. In
Section B, we explain why Lloyd relaxation [Lloyd 1982] may not
work well for the multi-class setting. In Section C, we provide an
alternative method, termed dart shuffling, that could achieve simi-
lar effects to relaxation without its problems. Dart shuffling can be
considered as a post process of our soft dart throwing algorithm for
further improvement of distribution uniformity. In Section D, we
provide additional results. In Section E we describe some imple-
mentation details, along with relevant math proofs in Section F. In
Section H, we suggest a heuristic to decompose a color image into
c channels for c-class color stippling.

A Pseudocode
Here we provide pseudo-codes for our main algorithms, including
hard dart throwing for uniform sampling (Program 5), hard dart
throwing for adaptive sampling (Program 6), and soft dart throwing
(Program 4).

function S←MultiClassSoftDartThrowing(Ω, {N i}i=0:c−1,E(.),Et)

// Ω: sampling domain
// {N i}: user specified sample count per class
// c: number of classes
// E(.): energy function defined in Equation 3
// Et: (optional) user-specified energy threshold for speedup
S← ∅ // final set of samples
while not enough samples in S
cs← arg minc FillRate (c) // choose the most under-filled class
s← null
Emin←∞
while Emin ≥ Et and not enough trials attempted
s′← new sample uniform-random drawn from Ω
if E(s′) < Emin
s← s′

Emin← E(s′)
end

end
add s to S

end
return S

Program 4: Multi-class soft dart throwing.

function S←MultiClassHardDartThrowing(Ω, {ri}i=0:c−1)

// Ω: sampling domain, c: number of classes
// {ri}: user specified parameters for intra-class sample spacing
// r: c× c matrix controlling inter-class sample spacing
r← BuildRMatrix({ri}i=0:c−1) // see Program 2
S← ∅ // final set of samples
while not enough trials attempted and not enough samples in S
s← new sample uniform-random drawn from Ω
cs← arg minc FillRate (c) // choose the most under-filled class
if ∀s′ ∈ S |s− s′| ≥ r̂(s, s′) // conflict check

add s to S
else if impossible to add another sample to cs

// try to remove the set of conflicting samples ns
ns←

⋃
s′ ∈ S where |s− s′| < r̂(s, s′)

if Removable(ns, s, r)
remove ns from S
add s to S

end
end

end
return S

function float r̂(s, s′)

return r(cs, cs′)

function float FillRate(c)

return # of existing samples∈c
target # of samples for c // see Equation 1

function bool Removable(ns, s, r)

foreach s′ ∈ ns
if r(cs′ , cs′) ≥ r(cs, cs) or FillRate(cs′) < FillRate(cs)

return false
return true

Program 5: Multi-class hard dart throwing for uniform sampling.

function S←MultiClassHardDartThrowing(Ω, {ri(.)}i=0:c−1)

// {ri(.)}: spatially-varying parameters for intra-class sample spacing
r(.)← BuildRMatrix({ri(.)}i=0:c−1) // see Program 2
// ... see Program 5 for the rest ...

function float r̂(s, s′)

return r(s,cs,cs′)+r(s′,cs′ ,cs)
2

function bool Removable(ns, s, r(.))

foreach s′ ∈ ns
if r(s′, cs′ , cs′) ≥ r(s, cs, cs) or FillRate(cs′) < FillRate(cs)

return false
return true

Program 6: Multi-class hard dart throwing for adaptive sampling. The col-
ored portions highlight differences from the uniform sampling in Program 5.

B Multi-Class Lloyd Relaxation
Lloyd relaxation [Lloyd 1982] is a classical method to generate blue
noise samples from a given initial configuration. Similar to our soft
disk sampling method, it offers explicit control for sample counts.
Unfortunately, even though relaxation works well in the traditional
single-class setting, we have found it problematic for handling mul-
tiple classes of samples. Below, we first describe our extension for
the multi-class setting, then demonstrate the issues we have found.

Let S be a set of samples (i.e. sites in the jargon of [Balzer et al.
2009]), V the Voronoi tessellation generated from S, and Vi the
Voronoi region corresponding to sample si ∈ S. The uniformity of
S can be measured by the following energy function

E(S,V) =
∑
i

∫
Vi

%(p) |p− si|2 dp (4)

where p indicates a point in the sample domain Ω and % is a non-
negative density function defined over Ω. Lloyd relaxation [Lloyd
1982] minimizes this energy function by iterating the following two
steps until meeting some termination criterion:

Voronoi generate the Voronoi tessellation V from the sample set S

Centroid move each sample si ∈ S to the centroid mi of the cor-
responding Voronoi region Vi ∈ V

mi =

∫
Vi
%(p)pdp∫

Vi
%(p)dp

(5)

For multi-class sampling, we can extend Equation 4 as follows:

E(S,V, C) =

2c−1∑
j=0

ω(Cj)
∑
si∈Sj

∫
Vij

%(pj) |pj − si|2 dpj (6)

where (as in Section 2) C indicates the set of classes, c the number
of classes, Cj the jth possible class combination (out of 2c total
possibilities), ω(Cj) the weight factor for class combination Cj (to
be explained below), Vj the Voronoi tessellation formed from the
sample set Sj = {s | c(s) ∈ Cj}, and Vij ∈ Vj the Voronoi region
corresponding to si in the context of class combination Cj .

To minimize Equation 6, we can extend traditional Lloyd relaxation
as follows:

Voronoi for each class combinationCj (2c total for c classes), gen-
erate the Voronoi tessellation Vj from the set of samples Sj
with class ids belong to Cj , i.e. Sj = {s | c(s) ∈ Cj}

Centroid move each sample si ∈ S to the centroid mi of the cor-
responding Voronoi regions {Vij ∈ Vj}j=0:2c−1

mi =

∑2c−1
j=0 ω(Cj)

∫
Vij

%(pj)pjdpj∑2c−1
j=0 ω(Cj)

∫
Vij

%(pj)dpj
(7)

This class weight parameter, ω, plays a very similar role to the ω in
Equation 3. Here, for clarity of presentation, we formulate ω(Cj)
in the most general form for all possible class combinations Cj ,
even though for practical reasons it might suffice to consider only
≤ 2 classes as in Equation 3. However, this does not really matter
here, as we use a very simple 2-class example below to show that
relaxation is problematic.

Failure case Multi-class relaxation might get stuck in local
minimums with insufficient sample uniformity for a simple rea-
son: for a given sample s, different class combinations may have
very different opinions about the desired centroid location to which
s should move. A simple 2-class example is shown in Figure 13.
There, we first generate an initial sample set via our soft dart throw-
ing algorithm. We then try to improve its uniformity via either
multi-class relaxation or dart shuffling. In the first case of relax-
ation, we set ω = 1. As shown, even though the uniformity of the
individual classes improves, the total sample set becomes less uni-
form. This is evident from both visual inspection as well as the
reduced ρ [Lagae and Dutré 2008]. One might conjecture that this
is due to the smaller Voronoi region for each sample in the total
class, so in the second relaxation case we compensate for this by
normalization with respect to the Voronoi region areas. However,
even though the uniformity of the total set improves slightly, both
the individual classes become less uniform as a consequence. In
particular, class 1 actually becomes less uniform than the initial
condition. We have found that no matter how we tune the param-
eters, relaxation never produces better results than the initial con-
dition. We have also tried to generate the classes on after another,

i.e. generating one class first via relaxation, keep the samples fixed,
and then generate another class following the formulation above,
but this still does not improve the problems. Our dart shuffling
method, in contrast, improves uniformity for all class combinations
as shown in Figure 13.

In addition to traditional relaxation [Lloyd 1982], we have also
tried capacity constraint [Balzer et al. 2009] but the same prob-
lem persists. This is not surprising, as capacity constraint mainly
addresses the overly-regular problem of [Lloyd 1982] by changing
the Voronoi step, not the centroid step that is causing problems in
the multi-class setting.

C Dart shuffling
Our soft dart throwing algorithm as described in Section 3.2 can
generate fairly good initial sample distributions. However, the uni-
formity of the produced sample sets often leaves room for fur-
ther improvement (Figure 13). As explained in Section B, one
classical method for such improvement is Lloyd relaxation [Lloyd
1982; Balzer et al. 2009], where sample uniformity is gradually
improved through an iterative process alternating between Voronoi
and centroid computations. Unfortunately, despite its efficacy in
single class setting, extension of Lloyd relaxation to multi-class
scenario might not work well. The reason is that, unlike in the
traditional single class setting where each sample s belongs to only
one Voronoi region, s would belong to different Voronoi regions
computed through different class combinations. Thus, during the
centroid stage different Voronoi regions corresponding to s might
have conflicting opinions on where to move it, trapping the compu-
tation in a non-uniform local minimum.

soft dart throw
ρ0 = 0.65

ρ1 = 0.67
ρall = 0.65

relax equal class
ρ0 = 0.73

ρ1 = 0.77
ρall = 0.48

relax equal region
ρ0 = 0.70

ρ1 = 0.62
ρall = 0.52

dart shuffle
ρ0 = 0.70

ρ1 = 0.68
ρall = 0.68

Figure 13: Comparison between multi-class relaxation and dart shuffling.
From left to right: initial set generated by soft dart throwing (with 100 sam-
ples per class), relaxation by equal class weighting, relaxation by normal-
ization with Voronoi region area, and dart shuffling. Note that the right 3
results are all produced from the left-most case as the initial condition. The
uniformity measures ρ are also indicated below each case.

Figure 13 demonstrates a typical scenario. Starting with an initial
distribution computed by our soft dart throwing, we aim to improve
its uniformity through multi-class relaxation. We perform two trials
with different weightings. The first trial weighs all classes equally;
as shown, the uniformity of the individual classes improves at the
expense of the total union. To improve this, in the second trial we
normalize the weights in the centroid computation to favor the total
union (which has smaller Voronoi regions). However, even though
the uniformity of the total union turns out better, one of the classes
becomes worse than the initial condition. We have found that no
matter how we tune the parameters, relaxation never produces bet-
ter results than the initial condition.

To address this issue, we present an alternative method, dart shuf-
fling, where a sample set is iteratively improved from a given ini-
tial distribution. Unlike relaxation where samples are only locally
jittered, we allow samples to be moved anywhere in the domain
as long as the movement improves the uniformity of distribution.
Specifically, to shuffle a sample s, we draw several candidate loca-

tions {s′} randomly from the domain Ω and pick the one s′ that
most minimizes max (E(.)) among samples around s and s′ if
these two swap locations. (If Ω is continuous, s′ would almost
always be empty, and thus the swap reduces to moving s to the lo-
cation of s′. However, if Ω is discrete, s′ might actually be a real
sample, thus we need to swap the locations of s and s′ to preserve
sample counts.) (This process can be considered a form of random
descent [Turk and Banks 1996].) Since dart shuffling is primarily
used as a refinement from a reasonably uniform initialization by
soft dart throwing, we have found it sufficient to shuffle each sam-
ple once, in the order of decreasing energy value. We have also
found that directly applying the dart shuffling process to a multi-
class white noise initialization leads to tougher convergence issues
than from our soft dart throwing initialization.

D Additional Results
Here, we provide additional comparisons between multi-class
Lloyd relaxation and our dart shuffling method as described in Sec-
tion C. As shown in Figure 14, we generate 2 classes of samples via
different possible relaxation methods: concurrent, where all sam-
ples are relaxed together from an initial white noise distribution;
sequential, where the classes are produced one after another; and
a last case where the samples are initialized from a single class
of already relaxed samples. Compared to the result produced by
single-class relaxation, it is obvious that none of the multi-class re-
sults appear to be nearly as uniform. However, our method still
produces more uniform distributions than relaxation, both visually
(Figure 14) and by ρ measurement (Table 2).

2-
cl

as
s

re
la

xa
tio

n
1-

co
lo

rf
or

al
l

2 concurrent sequential good init joint

co
m

pa
ri

so
n

2 2-class shuffling 1-color for all 1-class relaxation

Figure 14: Comparison between multi-class Lloyd relaxation and dart
shuffling. On the top row, we use various options to generate 2 classes of
samples via multi-class Lloyd relaxation, with single coloring in the middle
row for easy comparison. As shown, the results lack sufficient uniformity as
compared to multi-class dart shuffling (bottom row). The ground truth pro-
vided by traditional (1-class) relaxation is also shown (bottom row right).

concurrent sequential joint dart shuffle 1-class relax
c0 0.79 0.72 0.71 0.71 NA
c1 0.78 0.79 0.77 0.72 NA
all 0.50 0.59 0.43 0.71 0.77

Table 2: The ρ measurements for the results shown in Figure 14.

Figure 16 compares our method with color halftoning. Figure 17
shows that halftoning does not guarantee a general blue noise sam-
pling even in the traditional single class setting. Figure 18, 19, 20,
21, 22, 23 are additional results for Section 4. Figure 24 visualizes
a soft disk sampling energy function. Figure 25 provides a larger
color stippling result.

Linear subset In addition to the total sample set, due to our
r-matrix construction algorithm, we have found that subsets con-
taining classes with r over a certain value would also exhibit sat-
isfactory blue noise properties, as shown in Figure 15. However,
in general this is not true for an arbitrary collection of classes; our
current method does not enforce this, and we believe it might not
be possible to enforce simultaneous blue noise properties for all
possible class combinations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

r ≥ 0.16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

r ≥ 0.08

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

r ≥ 0.04

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

r ≥ 0.02

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

r ≥ 0.01

Figure 15: Partial class union. Here we have a 5-class set with r values
indicated above. The red radial mean curves are from our results whereas
the green ones from 1-class ground truth.

serpentine 1282 hilbert 1282

serpentine 5122 hilbert 5122

our method

Figure 16: Comparison with color halftoning. The left column is produced
by extending [Zhou and Fang 2003] for color/vector error diffusion in a ser-
pentine order, with different output resolutions (1282 top and 5122 bottom).
The middle column is produced by [Knuth 1987] + a Hilbert curve ordering
to reduce the serpentine order artifact.. The right column is produced by our
soft disk sampling method in a continuous space without any discretization.

r-matrix computation Figure 22 demonstrates the effects of
the r-matrix on sample quality for a 3-class scenario. In the left
case, we compute the off-diagonal entries of r uniformly via Equa-
tion 2. In the middle case, we compute r via Program 2. (We
have to use more than 2 classes because otherwise these two cases
would be equivalent.) Note that in all cases class c0 have very sim-
ilar results to the ground truth; this is to be expected as c0 has the
largest r value, causing it to have the smallest inner ring in the
power spectrum and thus immune from contaminations by the other
two classes. However, for classes c1 and c2, the results are quite dif-
ferent. Since the r is computed in a prioritized order in the middle
case, it clearly has a better distribution for c2 than the left case. The
middle case does have a slightly worse class c1 than the left case
(because c1 is more constrained), but the difference is quite minor.

serpentine 1282 hilbert 1282

serpentine 5122 hilbert 5122

our method

Figure 17: Comparison with scalar halftoning. This is similar to Figure 16,
except that we have only one class of samples. Notice the problematic sam-
ple distribution produced by halftoning methods.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o

w
e

r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n

is
o

tr
o

p
h

y

frequency

c = 2

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n

is
o

tr
o

p
h

y

frequency

c = 17

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n

is
o

tr
o

p
h

y

frequency

c = 32

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n

is
o

tr
o

p
h

y

frequency

c = 128

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n

is
o

tr
o

p
h

y

frequency

c = 256
Figure 18: Spectrum results for different number of classes. More results
for Figure 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 2600
N1 = 7800

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 1300
N1 = 9100

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 325
N1 = 10075

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 81
N1 = 10319

Figure 19: Total sample set distribution. More results from soft disk sam-
pling for Figure 6.

E Implementation
So far we have only described how our algorithms work using the
abstract, high-level metaphor of dart throwing. Even though dart
throwing can provide high quality, it is also well known for its slow
computation speed. Here we provide more implementation details
about acceleration and other issues.

E.1 Single-resolution grid

One possibility to accelerate dart throwing is via a grid data struc-
ture as described in [Bridson 2007; White et al. 2007; Wei 2008].
The basic idea there is to subdivide the sample domain Ω into grid
cells so that each cell can contain at most one sample. Thus, for

ground truth our method

Figure 20: Spatial sampling quality comparison via the zone plate pattern
sin(x2 + y2). Each image is produced with 166400 samples (roughly 1
sample per pixel) and filtering with a 3 pixel wide Gaussian kernel. The
left image is produced from the single-class ground truth and the right im-
age from our method as shown in the third case in Figure 7 where the two
distributions deviate the most.

uniform sampling, one only needs to examine a constant number of
cells surrounding a new trial sample for conflict check. This grid
data structure can be trivially extended for our multi-class uniform
sampling algorithm, and we could also use the grid cells to track
the available remaining space for each class of samples (for the
purpose of estimating impossibility to add samples in Program 5).
However, since the grid has to be fine enough to accommodate the
minimum value in our r-matrix while the conflict check has to be
conservative enough for the maximum value in the r-matrix, the
computation cost of a single-resolution grid implementation of our
algorithm will increase linearly with respect to the ratio of the max
and min values of r. This situation is further exacerbated in adap-
tive sampling.

E.2 Multi-resolution tree

The aforementioned issues for a single-resolution grid could be ad-
dressed by a multi-resolution tree structure as described in [Wei
2008]. The basic idea there is to store larger samples (in terms
of r(.)) at a lower resolution of the tree while the smaller ones at
higher resolutions, so that the conflict check can be performed by
looking at a constant number of tree nodes at each resolution.

The multi-resolution single-class algorithm in [Wei 2008] could be
combined with our single-resolution multi-class algorithm in Pro-
gram 6. The hybrid algorithm for multi-resolution multi-class sam-
pling is summarized in Program 7. Our main idea is to use c indi-
vidual trees to store each class of samples, and for each new trial
sample s we perform conflict check across multiple trees for all ex-
isting samples that have potential for conflict. (The algorithm can
be visualized as the spatial overlay of c individual trees for each
class of samples.) Since the number of samples stored in each tree
can be quite different, we also subdivide the trees on demand in-
stead of all together. This means that at any time the trees can have
a different number of levels. We traverse the nodes of any tree level
in a randomized order to avoid bias (as discussed in [Wei 2008]).

The main difference between our algorithm and [Wei 2008] is the
cross conflict check between a trial sample s and a tree T for dif-
ferent classes. Specifically, when s is generated from its own (same
class) tree T s, s must be drawn from a highest resolution leaf cell
2s and thus all the math properties of [Wei 2008] hold. However,
when s is conflict-checked against a different tree T , 2s might not
even have a twin cell in T , or the twin cell exists but is not on the
highest resolution of T . Thus, the algorithm in [Wei 2008] cannot
be directly applied. To handle these situations, we extend the ap-
proach of [Wei 2008] as follows. Let the trial sample s be generated
at level l from T s. In [Wei 2008], the conflict check is performed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 4297

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N1 = 6103

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 2600

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N1 = 7800

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 1300

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N1 = 9100

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 325

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N1 = 10075

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N0 = 81

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
y

frequency

N1 = 10319

Figure 21: Spectrum results for two classes with differentN values. Here we show the soft disk results for Figure 7. Each pair of column is produced together
with different N0 and N1 values so that their total is a sample set with N = 10400.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N0 = 323

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N1 = 1295

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N2 = 5183

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N0 = 323

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N1 = 1295

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N2 = 5183

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N0 = 323

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N1 = 1295

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

N2 = 5183

classes generated together
r has uniform off-diagonal entries via Eq 2

classes generated together
r computed via Program 2

classes generated sequentially (c0 ≺ c1 ≺ c2)
r computed via Program 2

Figure 22: r-matrix computation and class priority. Here we show the soft- rather than hard-disk results because the effects are more pronounced. In the radial
mean plots, the red curves correspond to multi-class results, and the green curves the single-class ones. Note that a r-matrix with uniform off-diagonal entries
would cause noiser power spectrum for c2 (compare the radial mean plots between the left and middle cases for c2 in frequency range [0 50]). Generating the
classes sequentially would introduce low frequency noise for the classes produced latter (compare the middle and right cases).

by looking at, for each resolution l′ from l to 0, a set of cells within
3
√
nµ(l′) distance from the ancestor cell 2(l′) containing s. In

our approach, we simply look at cells within the same vicinity of
the ancestor cells not only within the same tree T s but also at all
other trees T . To accommodate for the aforementioned situations,
we make the following modifications: (1) we only examine cells
that actually exist in T and (2) if lmax(T)> l, for any non-leaf cell
2 at level l of T , we have to examine all samples contained within
its sub-tree. (This situation never happens in T s as lmax(T s) = l.)

To mathematically prove that the algorithm is correct, simply fol-
low the math proofs in [Wei 2008] and take into account the fact that
∀s ∈ Ω, the off-diagonal entries in r(s, ., .) are all smaller than its
diagonal entries according to our r-matrix construction algorithm
in Program 2. See Section F for math details.

E.3 Impossibility Estimation

A core component of our algorithm is to estimate when it is im-
possible to add samples to a specific class. For uniform sampling,
this can be precisely estimated by tracking the remaining available
space for each class in the merit of [Dunbar and Humphreys 2006]:
for each newly added sample s in class i, it will strike out a spherical
region centered at swith radius r(i, j) from the remaining available
space for class j. However, it is not clear how to extend this strategy
for adaptive sampling where r(.) can be spatially-varying. In addi-

tion, the algorithm can be quite complex to implement, especially
for high dimensional spaces [Bridson 2007; Wei 2008].

Fortunately, for our algorithm, all we need is a rough estimation
of impossibility rather than an 100% exact measurement. In our
current implementation, we simply use the grid/tree cells to track
available regions: for each newly added sample s in class i, we
strike out cells for class j that are entirely within the spherical re-
gion centered at s with radius r(s, i, j). (Note that this works for
both uniform and adaptive sampling, and we strike out cells only
for the sake of impossibility estimation, not really removing them
from the candidate list {2}l in Program 7.) We have found this
strategy work well in practice.

F Math Details
Claim F.1 The hyper-sphere radius utilized in Program 7 is con-
servative enough to check all potential conflicts (for both the mean
and max metrics).

Proof For clarity, in the discussion below we mainly use the max
metric (as in [Wei 2008]); claims about the mean metric could be
proved analogously.

Let’s consider the conflict check between a new sample s in class
cs and an existing sample s′ in class cs′ . When cs = cs′ , the situ-
ation reduces to the single-class algorithm in [Wei 2008]. When

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 50 100 150 200 250

p
o
w

e
r

frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

p
o
w

e
r

frequency

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r0 = 0.04

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r1 = 0.02

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r2 = 0.01

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r0 = 0.04

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r1 = 0.02

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r2 = 0.01

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r0 = 0.04

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r1 = 0.02

-20

-15

-10

-5

 0

 50 100 150 200 250

a
n
is

o
tr

o
p
h
y

frequency

r2 = 0.01

classes generated together
r has uniform off-diagonal entries via Eq 2

classes generated together
r computed via Program 2

classes generated sequentially (c0 ≺ c1 ≺ c2)
r computed via Program 2

Figure 23: r-matrix computation and class priority. Here we show the hard disk sampling results for Figure 22.

Figure 24: Soft disk
sampling energy visual-
ization. This exam-
ple contains 3 classes
with number of samples
8 (red), 32 (green), and
196 (blue).

cs 6= cs′ , note that (1) Claim A.1 in [Wei 2008], which states
that for any existing sample s generated in tree level l we have
r(s, cs, cs) ≤ 2

√
nµ(l), still holds true for each individual class,

and (2) for each trial sample s produced in level l, r(s, cs, cs) must
be ≤ 2

√
nµ(l′) for each l′ = 0 to l, in order to survive the conflict

check within its own tree T cs , as in the last statement of Claim A.2
in [Wei 2008]. These two properties, together with the fact that for
each s′, r(s′, cs′ , cs) < r(s′, cs′ , cs′) (i.e. the inter-class distances
are smaller than intra-class ones due to our construction algorithm
in Program 2), inform us that to check conflict between a trial sam-
ple s and a node 2(l′) ∈ level l′ (≤ l of s) of tree T cs′ of a different
class cs′ , the distance 3

√
nµ(l′) would be enough to conflict-check

s with all samples ∈ Ω (2(l′)). This, in turn, allows us to check all
samples contained in non-leaf cells at level l as well as all leaf cells
at level l′ < l of tree T cs′ .

G Original Dart Shuffling Algorithm
Below we describe an older version of our dart shuffling algorithm
that we designed in order to apply to an arbitrary initialization, no-
tably multi-class white noise distribution. However, we have found
that doing so would incur excessive number of iterations for the
sample set to converge to a good multi-class blue noise distribu-
tion. Eventually, we resolved this issue via our soft disk sampling
algorithm as a much better initialization. Below, we briefly describe
our old algorithm for bookkeeping purposes. It is also summarized
in Program 8 for easy reference.

The dart shuffling is an iterative process. Within each iteration, we
first identify the sample s with maximum energy E(s) among all
samples. We then move the sample to another location so that

max (E(.)) is most reduced. This can be achieved by attempting
multiple trials locations s′ and pick the one where swapping the lo-
cations of s and s′ would most reduce max (E(.)) . The precise
meaning of swap depends on whether there is a sample at s′ (if the
sample space Ω is continuous s′ should never collocate with an ex-
isting sample, but if Ω is discrete this might happen); if so we swap
the locations for the two samples, and if not we simply move s to
s′. We iterate this process until the uniformity of sample distribu-
tion barely changes or when a maximum number of iterations are
reached. The former can be achieved by either a threshold value
for sample movement or a threshold ρt value measuring uniformity
[Lagae and Dutré 2008].

H Color Channel Decomposition
Let I be the input multi-channel importance field (e.g. a color im-
age). Our goal is to decompose it into multiple mono-color impor-
tance fields {Ii}i=0:c−1 so that each Ii serves as the importance
field for a particular sample class. Let ~ci denotes the (normalized
vector valued) color of Ii. We can then factor Ii into ~ciΥi where
Υi is a scalar importance field. We can formulate all these into the
following equation:

I =

c−1∑
i=0

Ii =

c−1∑
i=0

~ciΥi (8)

subject to the hard constraint that all Υi must be ≥ 0. When the
number of output channels c > the number of input channels, this
decomposition becomes under-constrained and multiple possible
solutions exist. To make sure all sample classes are well repre-
sented, our goal is to perform a decomposition so that the element-
sum |Υi| are as similar to each other as possible. (Thus, our goal is
quite different from traditional color decomposition methods.)

To achieve this goal, we use the following simple heuristic. For
each input sample/pixel, we sort its color channels in order of in-
creasing values. We then visit the input channels in that order,
subtract away values from output channels that have already been
assigned, and split the remaining value equally among all output
channels that are not yet assigned. See Program 9 for a summary of
our algorithm. We have found this heuristic works well in practice,
and have used it to produce color stippling, as shown Figure 9.

function MultiClassAdaptiveSampling(Ω, r(.), k)
// Ω: sampling domain in n-dimension
// r(.): c× c r-matrix defined over Ω; see Program 6
// k: maximum number of trials per node
// use separate trees to track each class of samples
{T i(0)}i=0:c−1← BuildNDTreeRoots(Ω) // hypercubes covering Ω
foreach class i li← 0 // track the leaf level number for each T i
foreach class i {2}lii ← randomized list of (leaf) nodes ∈ T i(li)
while not enough trials attempted and not enough samples in {T i}
← arg minc FillRate (c) // choose the most under-filled class
if {2}l = ∅ // no more leaf nodes to sample from; try subidivide T
T (l + 1)← Subdivide(Ω, r(.), T (l))
if T (l + 1) = ∅ break // impossible to add another sample
l← l + 1

{2}l ← randomized list of (leaf) nodes ∈ T (l)
end
2← PopFront({2}l) // take the head of the randomized list
s← ThrowSample({T i}, Ω(2), r(.), k, l)
if s is not null

add s to 2

else if impossible to add another sample to class
// try to remove the set of conflicting samples ns
ns←

⋃
s′ ∈ S where s and s′ are in conflict

if Removable(ns, s, r(.)) // see Program 6
remove ns from {T i}
add s to 2

end
end

end

function T (l + 1)← Subdivide(Ω, r(.), T (l))
i← class number for T
foreach node 2 of T (l)

if ∃s ∈ 2 and
√
nµ(2) > r(s, i, i)

// subdivide 2 only if likely to add another sample
// µ(2) is the cell size of 2

subdivide 2 into 2n child nodes // n is the dimension of Ω
migrate s into the child 2′ where s ∈ Ω(2′)

end
end
T (l + 1)← newly created nodes
return T (l + 1)

function s← ThrowSample({T i}, Ω(2), r(.), k, l)
foreach trial = 1 to k
s← sample uniformly drawn from Ω(2)
if ∀s′ ∈ T |s− s′| ≥ max (r(s, cs, cs′), r(s′, cs′ , cs))
// this can be done by examining only s′ ∈ neighbor nodes in T cs′
// within hyper-sphere of radius 3

√
nµ(l′) at level l′ = 0 to l

// for each node in level l of T cs′ look at samples under its subtree

// can also use the mean metric r(s,cs,cs′)+r(s′,cs′ ,cs)
2

in Program 6
// in this case, use hyper-sphere radius 5

√
nµ(l′) above

// and 1
2
r(s, i, i) in Subdivide()

return s
end
return null

function bool Removable(ns, s, r(.))

foreach s′ ∈ ns
if r(s′, cs′ , cs′) ≥ r(s, cs, cs) or FillRate(cs′) < FillRate(cs)
if or level(s’) < level(s) // add on beyond Program 6

return false
return true

Program 7: Multi-resolution adaptive sampling using separate trees to
track each class of samples. The main code is a hybrid of the multi-
resolution algorithm in [Wei 2008] and our adaptive sampling algorithm
in Program 6. The functions Subdivide() and ThrowSample() resemble the
ones in [Wei 2008]; for easy comparison, we highlight the main differences.

function S′←MultiClassDartShuffling(Ω, S,E(.), ρt)

// Ω: sampling domain
// S: initial samples in c classes
// E(.): energy function defined in Equation 3
// ρt: user threshold value for ρ
done← false
while not done and ρ < ρt and not enough trials attempted

change← false
foreach s ∈ S from high to low energy E(s)
s′← FindTrough(s,Ω, S,E(.))
if s′ is not null

Swap(s, s′) // swap locations of s and s′ but keep their class ids
change← true
break

end
end
if not change

done← true
end

end
return S

function smin← FindTrough(s,Ω, S,E(.))

Emin← E(s)
smin← null
while not enough trials attempted
s′← uniform random sample from Ω
Swap(s, s′)
Enew ←max{E(FindPeak (s, S,E)),E(FindPeak (s′, S,E))}
if Enew < Emin

Emin← Enew
smin← s′

end
Swap(s, s′) // undo previous swap

end
return smin

function s′← FindPeak(s, S,E(.))

// find the peak sample s′ ∈ ns, the neighbor samples near (including) s
return arg maxs′{E(s′), s′ ∈ S and s′ ∈ ns}

Program 8: Multi-class dart shuffling.

function {Υi}i=0:c−1← ColorChannelDecomposition(I, {~ci}i=0:c−1)

// I: input importance field, e.g. a color image
// {~ci}i=0:c−1: output colors in c classes
// {Υi}i=0:c−1: the corresponding weight fields for the output colors
foreach pixel/sample p ∈ I
{Υi(p)}i=0:c−1← PixelDecomposition(I(p), {~ci}i=0:c−1)

end
return {Υi}i=0:c−1

function {υi}i=0:c−1← PixelDecomposition
(
{pj}j=0:c′−1, {~ci}i=0:c−1

)
// {pj}j=0:c′−1: input pixel in c′ color channels
// {υi}i=0:c−1: output weight pixel
{assignedi}i=0:c−1← 0
foreach pj in ascending order of value
v← pj -

∑
i assignediυi~cji

w←
∑
i(assignedi == 0 and ~cji > 0)

foreach i from 0 to c− 1
if assignedi == 0
υi← v

w~cji

assignedi← 1
end

end
end
return {υi}i=0:c−1

Program 9: Color channel decomposition.

Figure 25: Color stippling result. This is the same sample set as in Figure 9, but we plot the dots in a smaller size and en-
large the image to make the sample locations more distinguishable. (Doing so makes the stippling effect whiter than usual.)
The source image, shown on the left, is from http://scienceblogs.com/cognitivedaily/upload/2009/02/
visual_illusion_may_explain_th/monnier2.jpg.

